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Introduction  

Naphthoquinones are wide-spread phenolic 
compounds in nature, based on the C6-C4 
skeleton.   1,   4-Naphthoquinones   can   be                                             

viewed as derivatives of  naphthalene 
through the replacement of two  hydrogen  
atoms  by two ketone groups (Figure 1a). 

A B S T R A C T  

In this study an attempt was made to understand the structural requirements 
for Topoisomerase I (Topo I) inhibition using a novel Group based QSAR 
(GQSAR) or fragment based QSAR technique. Here we combined the 
GQSAR technology with conventional 2D and 3D QSAR to derive GQSAR 
models for various reported Naphthoquinone derivatives. Various regression 
models such as Multiple Regression (MRA), Partial Least Square (PLS) and 
Principal Component Analysis (PCA) as well as k-Nearest neighbor (k-NN) 
QSAR were used to develop several combined 2D and 3D GQSAR models. 
The GQSAR analyses revealed the importance of Geometrical topological 
indices and Baumann s alignment independent topological descriptors along 
with dipole moment and other general descriptors like HBonddonor and 
XYHydrophilic etc for governing the activity variation. Further the GQSAR 
showed that chemical variation like presence of substituted double bonded C 
atom separated from oxygen by 6 bonds and HBonddonor count are highly 
influential for achieving highly potent Topo I inhibitors. The Naphthoquinone 
derivatives having 2-CH(OX)-(CH2CH=CMe2)-5,8-dihydroxy-1,4-
naphthoquinone substitutions are most important fragments for the inhibitory 
activity. In addition the k-nearest neighbor classification model resulted in 3 
important descriptors like moment of inertia, quadrapole and hydrogen count. 
The developed models are interpretable with good statistical and predictive 
significance and can be used for guiding ligand modification for development 
of potential new Topo I inhibitors. From the present study it can be seen that 
the substitutions made on 2-CH(OX)-(CH2CH=CMe2)-5,8-dihydroxy-1,4-
naphthoquinone position can result in better Topo I inhibitors. 
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They are products of bacterial and fungal as 
well as high-plants secondary metabolism. 
Naphthoquinones display very significant 
pharmacological properties--they are 
cytotoxic, they have significant antibacterial, 
antifungal, antiviral, insecticidal, anti-
inflammatory, and antipyretic properties. 
Pharmacological effects to cardiovascular 
and reproductive systems have been 
demonstrated too. The mechanism of their 
effect is highly large and complex--they 
bind to DNA and inhibit the processes of 
replication, interact with numerous proteins 
(enzymes) and disturb cell and 
mitochondrial membranes, interfere with 
electrons of the respiratory chain on 
mitochondrial membranes [1].   

Many derivatives of Naphthoquinones have 
been reported to show anti Topo I enzyme 
activity [2, 3-7]. It has been suggested that 
they inhibit the enzyme by binding to the Zn 
finger domain of the protein (Figure 1b) [8]. 
Attempts have been made to establish a 
Quantitative structure activity relationship of 
the naphthoquinone derivatives so as to 
obtain new better molecules having anti 
Topo I activity. A number of in-silico and 
experimental approaches have been 
mentioned for assisting in the design of 
novel and more effective naphthoquinone 
molecules as Topo I inhibitors. Many 2-D 
QSAR models have been developed to relate 
the structure of naphthoquinone derivatives 
with their biological activity. However, they 
mainly focus on a particular chemical class 
of molecules. This paper introduces a novel 
approach known as Group QSAR (GQSAR) 
or fragment based QSAR to gain deeper 
insights into the structural requirements for 
Topoisomerase I inhibition and develop 
quantitative models for the development of 
new naphthoquinones. GQSAR is a recent 
QSAR method developed, which addresses 
the challenges of QSAR model 
interpretation and the inverse QSAR 
problem [9]. GQSAR method comprises of 

three steps: (1) generation of molecule 
fragments using a set of predefined chemical 
rules, (2) calculation of descriptors for the 
generated fragments, (3) build statistical 
models using the calculated fragment 
descriptors and their interactions. GQSAR 
thus allows establishing a correlation of 
chemical group/fragment variation at 
different molecular sites of interest with the 
biological activity. Fragmentation is done by 
applying specific chemical rules for 
breaking the molecules along specific bonds 
and/or bonds on ring fusion and/or any 
pharmacophoric feature such as hydrogen 
bond acceptor, hydrogen bond donor, 
hydrophobic group, charged group etc. 
Thus, the GQSAR method deals with 
molecular fragments instead of the molecule 
as a whole. The fragment descriptors and 
their interactions are related to biological 
activity, resulting in model(s) that highlight 
important substitution site(s) along with 
their chemical nature and interactions. The 
suggested important fragments can be used 
as the building blocks to design novel 
molecules [16].  

 

Figure 1- (a) Naphthoquinone Scaffold, (b) 
Naphthoquinone- Topo I complex  

Methodology  

All computations and molecular modeling 
studies were carried out on a Windows 
workstation using the molecular modeling 
software package VLife Molecular Design 
Suite (VLifeMDS) version 3.5. The 
schematic representation of the entire 
methodology is demonstrated in Figure 2. 
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Figure.2 Flowchart of GQSAR 

  

Dataset- A total of 90 naphthoquinone 
based inhibitors with corresponding 
biological activities, reviewed from various 
literature sources were used in the study 
(Table 1-6) [3, 5, 7, 10, 11]. The minimum 
inhibitory concentration (IC50) values were 
converted to the corresponding pIC50 

( logIC50) values and used as dependent 
variables for the combined 2D and 3D 
GQSAR analysis. The pIC50 values span a 
range of 3-4 log units, providing a broad and 
homogenous data set for the GQSAR study. 
The initial structures of 90 compounds were 
constructed using the Marvin Sketch 5.3.8. 
These structures were incorporated into the 
VLife MDS GQSAR module.   

Energy Minimization- Energy 
minimization of the ligand structures was 
performed using the Merck Molecular Force 
Field (MMFF), with a distance-independent 
dielectric constant of 1.0 and MMFF 
charges, with a convergence criterion of 

1.00 kcal mol 1 Å for 1000 iterations. The 
gradient type was kept as analytical with 
non bonded cut off value of 20.0 for 
electrostatic and 10.0 for VanDer Waal 
forces. These minimized ligand molecules 
were used for QSAR analysis.   

Molecular Alignment- Template based 
alignment method was used to align the 
naphthoquinone derivatives useful for 
studying shape variation with respect to the 
base structure selected for alignment which 
is useful for calculation of 3D descriptors. In 
this alignment method, a template structure 
is defined and used as a basis for alignment 
of a set of molecules. The reference 
molecule is required on which the other 
molecules of the align dataset get aligned 
based on the chosen template. The template 
structure was chosen based on the 
naphthoquinone scaffold (Figure 1a) and 
molecule number 1 was used as reference 
molecule. 
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Molecule No X Molecule No

 

X Molecule 

No 

X 

1 H 4 COC3H7 7 COC6H13 

2 COMe 5 COC4H9 8 COCHMe2 

3 COC2H5 6 COC5H11 9 COCH2CH2CH=CH2 

Table.1 Naphthoquinone derivatives for scaffold 1   

Molecule 

No 

X Molecule No

 

X Molecule 

No 

X 

10 CHO 14 COC4H9 18 COC8H17 

11 COCH3 15 COC5H11 19 OCC9H19 

12 COC2H5 16 COC6H13 20 COC10H21 

13 COC3H7 17 COC7H15   

Table.2 Naphthoquinone derivatives for scaffold 2 
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Molecule 

No 

X Molecule 

No 

X Molecule 

No 

X 

21 H 24 C3H7 28 C7H15 

22 CH3 25 C4H9 29 C8H17 

23 C2H5 26 C5H11 30 C9H19 

  

27 C6H13   

Table.3 Naphthoquinone derivatives for scaffold 3    

Molecule 

No 

X Molecule 

No 

X Molecule 

No 

X 

31 H 35 C4H9 39 C8H17 

32 CH3 36 C5H11 40 C9H19 

33 C2H5 37 C6H13 41 C10H21 

34 C3H7 38 C7H15 42 C12H25 

Table.4 Naphthoquinone derivatives for scaffold 4  
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Molecule 

No 

X Molecule 

No 

X Molecule 

No 

X 

43 Acetyl 48 Isobutanoyl 54 trans-3-Hexenoyl

 

44 Monochloroacetyl 49 n-Pentanoyl 55 2,4-Hexadienoyl 
45 Trichloroacetyl 50 4-Pentenoyl 56 n-Heptanoyl 
46 n-Propanoyl 51 trans-2-

Pentenoyl 
57 2,6-Heptadienoyl

 

47 n-Butanoyl 52 n-Hexanoyl 58 6-Heptenoyl 

  

53 trans-2-
Hexenoyl   

Table.5 Naphthoquinone derivatives for scaffold 5   

Molecule 

No 

R1 R2 Molecule 

No 

R1 R2 Molecule 

No 

R1 R2 

59 Me H 70 C2H5 CO(CH2)5CH3 80 C4H9 CO(CH2)2CH3 

60 Me COCH3 71 C3H7 H 81 C4H9 CO(CH2)4CH3 

61 Me COCH2CH3 72 C3H7 COCH3 82 C4H9 CO(CH2)5CH3 

62 Me CO(CH2)2CH3 73 C3H7 COCH2CH3 83 C5H11 COCH3 

63 Me CO(CH2)4CH3 74 C3H7 CO(CH2)2CH3 84 C5H11 COCH2CH3 

64 Me CO(CH2)5CH3 75 C3H7 CO(CH2)4CH3 85 C5H11 CO(CH2)2CH3 

65 C2H5 H 76 C3H7 CO(CH2)5CH3 86 C5H11 CO(CH2)4CH3 

66 C2H5 COCH3 77 C4H9 H 87 C5H11 CO(CH2)5CH3 

67 C2H5 COCH2CH3 78 C4H9 COCH3 88 C7H15 COCH3 

68 C2H5 CO(CH2)2CH3 79 C4H9 COCH2CH3 89 C6H13 COCH2CH3 

69 C2H5 CO(CH2)4CH3    90 C6H13 CO(CH2)2CH3 

Table.6 Naphthoquinone derivatives for scaffold 6 
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Group based QSAR (GQSAR) - Here in, 
molecules were divided into six fragments 
based on the fragmentation rules derived in 
light of the specific molecular substitutions 
obtained from literature. In order to consider 
the environment of the neighboring 

fragment(s), the attachment point atoms 
were also included in the fragments. The 
scheme of molecular fragmentation is shown 
in Figure 3 and the final fragment template 
is indicated in Figure 4.  

 

Figure.3 Fragmentation scheme for GQSAR  

 

Figure.4 Template for fragmentation; purple points represent points of fragmentation  
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Fragment A- These are fragments obtained 
from 2-CH(OX)-(CH2CH=CMe2)-5,8-
dihydroxy-1,4-naphthoquinone derivatives. 
Fragment B- These are fragments obtained 
from 2-CH(OX)-(CH2CH=CMe2)-5,8-
dihydroxy-1,4-naphthoquinone derivatives. 
Fragment C- These are fragments obtained 
from the 6-X-5,8-dimethoxy-1,4-
naphthoquinones. 
Fragment D- These are fragments obtained 
from the 6-C(=NOH)X-5,8-dimethoxy-1,4-
naphthoquinones. 
Fragment E- These are fragments obtained 
from the 6-CH(R1)(OR2)-5,8-dimethoxy-
1,4-naphthoquinones. 
Fragment F- These are fragments obtained 
from the 6-C(=NOC3H7)X-5,8-dimethoxy-
1,4-naphthoquinones.  

Calculation of Molecular Descriptors  

All the total two and three dimensional 
descriptors were calculated using 
VLifeMDS software for all of the 6 
fragments [12]. These included various 
physicochemical (239), structural, 
topological, electro-topological, Baumann 
alignment independent topological 
descriptors (more than 700) [13] and atom 
type count descriptors (99). In addition 
various 3D descriptors such as electrostatic, 
hydrophobic and volume descriptors were 
also calculated. Preprocessing of the 
independent variables (i.e. descriptors) was 
done by removing the invariables (i.e. 
descriptor with a constant value for more 
than 95 percent molecules), which resulted 
in 1036 descriptors in the descriptor pool.  

Creation of training and test set- Optimal 
training and test sets were generated using 
random selection algorithm keeping the 
selection percentage ratio as 80:20 for 
training and test set respectively. Seventy 
two compounds were used as training set 
and eighteen in the test set for the combined 

GQSAR analysis. The test set molecules 
were selected by considering the fact that 
this set of molecules represents a range of 
biological activity similar to that of the 
training set. Thus, the test set is the true 
representative of the training set. In order to 
assess the similarity of the distribution 
pattern of the molecules in the generated 
sets, statistical parameters (with respect to 
the biological activity) i.e. mean, maximum, 
minimum and standard deviation were 
calculated for the training and test sets.  

Variable Selection Method- In order to 
select a subset of descriptors (variables) 
from the descriptor pool, a variable selection 
method known as stepwise forward 
backward selection was used [20,21].  

The following techniques were used to 
develop the QSAR models  

Multiple Regression Analysis (MLA) - 
Multiple regression is the standard method 
for multivariate data analysis. It is also 
called as ordinary least squares regression 
(OLS). This method of regression estimates 
the values of the regression coefficients by 
applying least squares curve fitting method. 
For getting reliable results, dataset having 
typically 5 times as many data points 
(molecules) as independent variables 
(descriptors) is required. The regression 
equation takes the form 

Y = b1*x1 + b2*x2 + b3*x3 + c  

Where Y is the dependent variable, the b s 
are regression coefficients for corresponding 
x s (independent variable), c is a 

regression constant or intercept [18, 19].  

Partial Least Square (PLS) Analysis- 
Partial least squares regression is an 
extension of the multiple linear regression 
model. In its simplest form, a linear model 
specifies the (linear) relationship between a 
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dependent (response) variable Y, and a set 
of predictor variables, X's, so that  

Y = b0 + b1X1 + b2X2 + ... + bpXp 

In this equation b0 is the regression 
coefficient for the intercept and the bi values 
are the regression coefficients (for variables 
1 through p) computed from the data. Partial 
least squares regression extends multiple 
linear regression without imposing the 
restrictions employed by discriminant 
analysis, principal components regression 
and canonical correlation. In partial least 
squares regression, prediction functions are 
represented by factors extracted from the 
Y'XX'Y matrix [14, 15].  

Principal Component Analysis- it rotates 
the data into a new set of axes such that the 
first few axes reflect most of the variations 
within the data. By plotting the data on these 
axes, we can spot major underlying 
structures automatically. The value of each 
point, when rotated to a given axis, is called 
the principal component value. Principal 
Components Analysis selects a new set of 
axes for the data. These are selected in 
decreasing order of variance within the data. 
They are also perpendicular to each other. 
Hence the principal components are 
uncorrelated. Rather than forming a single 
model, as with MLR, a model can be formed 
using 1, 2 ... components and a decision can 
be made as to how many components are 
optimal [22-25].  

k- Nearest Neighbour (k-NN) Analysis- 
The k-NN method was also used to develop 
a QSAR model using continuous variable 
i.e. using activity as pIC50 values. In this 
case, by using a developed k-NN QSAR 
model the activity of a molecule can be 
predicted using weighted average activity 
(Eq. (1)) of the k most similar molecules in 
the training set. 

 

. Eq 1 

Where yi and yi are the actual and predicted 
activity of the ith molecule respectively, and 
wi are weights calculated using (Eq. (2)). 

.. Eq 2 
The similarities were evaluated as the 
inverse of Euclidean distances (dj) between 
molecules (Eq. (3)) using only the subset of 
descriptors corresponding to the model. 
Where, k is number of nearest neighbours in 
the model. 

. Eq 3 
Where, X is the matrix of selected 

descriptors (Vn) for the k-NN QSAR model 
[17].  

Model Evaluation and Validation- This is 
done to test the internal stability and 
predictive ability of the QSAR models. 
Internal validation was carried out using 
leave-one-out (q2, LOO) method. To 
calculate q2, each molecule in the training 
set was sequentially removed, the model 
refit using same descriptors, and the 
biological activity of the removed molecule 
predicted using the refit model. The q2 was 
calculated using Eq. (4). 

  

... Eq 4 
Where yi, yi are the actual and predicted 
activity of the ith molecule in the training set, 
respectively, and ymean is the average activity 
of all molecules in the training set. For 
external validation, activity of each 
molecule in the test set was predicted using 
the model generated from the training set. 
The pred_r2 value is calculated as follows 
Eq. (5) 

. Eq 5 
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Where yi, yi are the actual and predicted 
activity of the ith molecule in the test set, 
respectively, and ymean is the average activity 
of all molecules in the training set. Both 
summations are over all molecules in the 
test set. Thus the pred_r2 value is indicative 
of the predictive power of the current model 
based on the external test set.  

Developed quantitative models were 
evaluated using following statistical 
measures: n, number of observations 
(molecules); k, number of variables 
(descriptors); Number of components, 
number of optimum PLS components in the 
model; Number of nearest neighbours, 
number of k-nearest neighbour in the model; 
r2, coefficient of determination; q2, cross-
validated r2 (by leave one out); pred_r2, r2 

for external test set; F-test, F-test value for 
statistical significance; SEE, standard error 
of estimate of the model; cv_SE, standard 
error of cross-validation and pred_SE, 
standard error of external test set prediction. 
The r2 and q2 values were used as deciding 
factors in selecting the optimal models.   

Results and Discussion  

Based on the information obtained from 
conventional 2D and 3D QSAR model 
descriptors, it is not exactly specified in 
which part of the molecule modifications are 
required so as to improve the activity, thus 
posing a hurdle in the complete structural 
interpretation. Therefore, in order to gain 
insight to the influential molecular part(s), in 
terms of their chemical information 
responsible for the variation in activity, 
GQSAR models involving fragment 
descriptors were developed. In addition to 
this, all the 2D and 3D descriptors were 
combined so as to obtain GQSAR models.   

Using the molecular alignment technique all 
the molecules were aligned in their 3D space 
conformations (Figure 5). The molecules 
were fragmented in 6 parts depending upon 
the molecular substitutions and the scheme 
in Figure 3 keeping the alignment intact, so 
as not to disturb the space conformations of 
the molecules. Individual fragment based 
descriptors were calculated for all the 6 
fragments.  

 

Figure 5- Molecular alignment of Naphthoquinone derivatives  

The statistical parameters for assessing the 
distribution of activity in the training and 
test sets have been listed in Table 7. As can 
be seen from table, the minimum biological 
activity of test set is same as that the 
minimum activity of training set (not less) 
and the maximum activity of the test set is 
less than the maximum activity of the 

training set, this indicates that the test set is 
within the activity domain of the training 
set. The comparable standard deviation and 
the mean values (as shown in Table 7) of 
training and test sets show that there is a 
similar distribution of training and test set 
molecules with respect to the activity. 
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Parameters Training set Test set 
Max 4.9400 4.8400 
Min 3.200 3.200 

Std. Dev 0.3170 0.3885 
Mean 4.1628 4.3106 

Table.7 Statistical parameters for assessing distribution of activity in training and test set  

All the calculated descriptors remaining 
after preprocessing (1036) were subjected to 
step wise forward- backward variable 
selection coupled, separately, with MRA, 
PLS, PCA and k-NN methods for building 4 
different QSAR models based on the same 
training set. This study led to various 

statistically significant 2D and 3D combined 
GQSAR models and their statistical 
parameters are reported in Table 8. Table 9 
reports descriptors for each of the fragments 
with their regression coefficient and 
percentage contribution in each of the 
reported QSAR models.  

Model Parameters GQSAR 
MRA 

GQSAR 
PLS 

GQSAR 
PCR 

GQSAR k-
NN 

Training set 72 72 72 72 

Test set 18 18 18 18 

R2 0.7812 0.7214 0.5684  

Q2 0.5622 0.5220 0.4704 0.5177 

F-test 17.5509 23.6736 17.3820  

R2_se 0.1707 0.1850 0.2267  

Q2_SE 0.2415 0.2423 0.2511 0.2202 

Pred_r2 0.7575 0.4798 0.6845 0.4455 

Pred_SE 0.1767 0.2572 0.2015 0.3107 

Number of Descriptors k 12 9 6 3 

Number of components/nearest 
neighbor 

72 7 5 72 

Degree of freedom 59 64 66 68 

Table.8 Statistical parameters of various GQSAR models  
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The equations explain 78 % (r2 = 0.78) and 
72% (r2=0.72) of the total variance in the 
training set for the MRA and PLS models 
respectively. It also has an internal (q2) 
predictive ability of ~56 % and ~52% and 
external (pred_r2) predictive ability of 75% 
and 47% respectively. The F-test = 17.68 
and 23.67 for MRA and PLS models 
respectively shows the statistical 
significance of the model which means that 

probability of failure of the model is very 
less. For the PCA model the r2 decreased to 
0.56 indicating 56% of the total variance in 
the training set. Also the q2 and pred_r2 

values indicate 47% and 68% of predictive 
ability for the model. The F-test = 17.38 
shows the statistical significance of the 
model which means that probability of 
failure of the model is very less.  

Descriptor MLR 
coefficien

t 

Percent 
contributio

n 

PLS 
coefficien

t 

Percent 
contributio

n 

PCR 
coefficien

t 
R1-SssCH2E-index -0.1329 -7.20   -0.1004 

R2-MMFF_6 -0.3565 -6.11 -0.3247 -13.78  
R3-Quadrupole3 0.0373 2.80    
R2-HosoyaIndex -0.006 -3.91 -0.0011 -17.57 -0.0005 

R2-G_2_T_5 0.0996 4.96 0.0824 10.13  
R1-H-DonorCount -0.7940 -3.46 -0.8905 -9.25 0.5970 

R2-G_C_C_7 -0.2325 -15.48    
R1-MomInertiaY -0.0002 -8.76    

R1-T_2_O_6 0.3153 7.27    

R2-G_T_T_6 0.1211 13.90    

R1-G_T_O_4 0.2251 13.42    

R1-G_C_C_6 -0.1529 -12.73    

R1-HosoyaIndex   -0.0018 -28.99  

R1-Quadrupole2   -0.0788 -7.97  

R1-SdCH2E-index   0.0798 5.74  

R2-G_T_O_7   0.1091 6.57  

R5-Quadrupole1     -5.4357 

R3-Quadrupole2     -0.0538 

R1-XKMostHydrophilic     -1.6114 

Table.9 Descriptors from MRA, PLS and PCR models with their coefficients  



 

300  

The contributions of the individual 
descriptors for both MRA and PLS are 
reported in Figure 6. Figure 7 shows the 
comparison of percentage contribution of 
descriptors common between various QSAR 
models such as MRA and PLS and MRA 
and PCA. From the figure it can be seen that 
common descriptors are R2_MMFF6, 
R2_Hosoyaindex and R2_G_2_T_5 for 
fragment B and R1_Hdonorcount for 
fragment A. It was seen that all the 
descriptor contributions for both the MRA 
and PLS are relatively same. Also all the 
fragments except R2_G_2_T_5 contribute 

negatively for the activity. For the MRA and 
PCA the common descriptors are 
R1_SssCH2Eindex and R1_Hdonorcount 
for fragment A and R2_Hosoyaindex for 
Fragment B. Here also the comparative 
contributions for both the analysis are 
relatively similar. The descriptors 
R2_Hosoyaindex and R1_Hdonorcount are 
common for all the 3 analysis. Table 10 
reports the list of important fragment 
specific descriptors found in various QSAR 
models along with their descriptor category 
and definition and Figure 8 shows summary 
of all the important descriptors.   

 

Figure.6 contribution plot of descriptors (left) MRA model, (right) PLA model   

  

Figure.7 Plot of contribution of descriptors common to (left) MRA and PLS model,  
(right) MRA and PCA model 
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Table.10 List of descriptors along with their category and definition  

Descriptors Category Definition 

Fragment A 

R1-SssCH2E-index Estate contributions Electrotopological state indices for number of CH2 
group connected with two single bonds. 

R1-H-DonorCount Physicochemical Number of hydrogen bond donor atoms 

R1-MomInertiaY Distance based 
Topological 

This descriptor signifies moment of interia at Y-axis 

R1-T_2_O_6 Alignment independent 
topological 

Count of number of double bounded atoms 
separated from Oxygen atom by 6 bonds. 

R1-G_T_O_4 Geometrical Topological

 

Count of number of topological atoms separated 
from oxygen atom by 4 bonds 

R1-G_C_C_6 Geometrical Topological

 

Count of number of carbon atoms separated from 
each other by 6 bonds 

R1-HosoyaIndex Distance based 
Topological 

signifies the topological index or Z index of a graph 
is the total number of matching in it plus 1 ("plus 1" 
accounts for the number of matchings with 0 edges) 

R1-Quadrupole2 Dipole Moment Signifies magnitude of second tensor of quadrupole 
moments. 

R1-SdCH2E-index Estate contributions Electrotopological state indices for number of CH2 
group connected with one double bond. 

R1-
XKMostHydrophilic 

Hydrophobicity XlogpK Most hydrophilic value on the vdW surface 

Fragment B 

R2-MMFF_6 Merck molecular force 
field (MMFF) atom type 

Count of beta carbon in 5-membered hetero-
aromatic ring 

R2-HosoyaIndex Distance based 
Topological 

signifies the topological index or Z index of a graph 
is the total number of matching in it plus 1 ("plus 1" 
accounts for the number of matchings with 0 edges) 

R2-G_2_T_5 Geometrical Topological

  

R2-G_C_C_7 Geometrical Topological

 

Count of number of carbon atoms separated from 
each other by 7 bonds 

R2-G_T_T_6 Geometrical Topological

  

R2-G_T_O_7 Geometrical Topological

 

Count of number of topological atoms separated 
from oxygen atom by 7 bonds 

Fragment C 
R3-Quadrupole3 Dipole Moment signifies magnitude of third tensor of quadrupole 

moments 
R3-Quadrupole2 Dipole Moment Signifies magnitude of second tensor of quadrupole 

moments. 
Fragment E 

R5-Quadrupole1 Dipole Moment Signifies magnitude of first tensor of quadrupole 
moments. 
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It can be seen from Figure 6 and Table 10, 
that substitution on fragment A and B are 
most influencing with highest percentage 
contribution in all the GQSAR models. This 
is also supported by the fact that the largest 
amount of variation in the chemical 
substituents is contained in fragment A 
followed by fragment B than fragments E 
and D. The activity variation is explained in 
terms of the Baumann s alignment 
independent topological descriptors, 
geometrical topological descriptors, dipole 
moment descriptors and other basic 
descriptors. Also, descriptors influencing the 
activity in favourable and unfavourable 
ways were found to be near 45 percent and 
55 percent, respectively.   

This information suggests that there is 
almost equal opportunity to optimize both 
the favourable and unfavourable descriptors 
in the design of new molecules. It is found 
that most of the contributing descriptors 
from all the models are from Fragment A. 
The important descriptors contributing 
towards Fragment A are R1-SssCH2E-
index, R1-H-DonorCount, R1-
MomInertiaY, R1-T_2_O_6, R1-G_T_O_4, 
R1-G_C_C_6, R1-HosoyaIndex, R1-
Quadrupole2, R1-SdCH2E-index and R1-
XKMostHydrophilic. Out of these R1-
T_2_O_6, R1-G_T_O_4 and R1-SdCH2E-
index contribute positively and others 
contribute negatively towards the inhibitory 
activity of Naphthoquinones against Topo I.   

R1-SdCH2E-index indicates the importance 
of substituted double bonded carbon atom 
(CH2=) to increase the activity. In the same 
way the descriptors R1-T_2_O_6 and R1-
G_T_O_4 are directly proportional to the 
activity as indicated in the Multiple 

Regression GQSAR model. The descriptor 
R1-T_2_O_6 shows the importance of 
double bonded C atoms separated from 
Oxygen atom by 6 bonds at fragment A to 
be detrimental to the inhibitory activity of 
the Naphthoquinone derivatives. The 
geometrical topological descriptor R1-
G_T_O_4 contributes most positively 
towards the activity with a contribution of 
13.42 %.   

It represents the geometrical topological 
index value for C atom separated from 
Oxygen by 4 bonds which is important for 
increasing the inhibitory activity. The 
remaining molecular descriptors are 
inversely proportional to the inhibitory 
activity and the most negatively contributing 
descriptor is R1-G_C_C_6 with -12.73% 
and R1-HosoyaIndex with -28.99%. The 
next important fragment contributing 
towards the overall inhibitory activity is 
fragment B. The descriptors important are 
R2-MMFF_6, R2-HosoyaIndex, R2-
G_2_T_5, R2-G_C_C_7, R2-G_T_T_6 and 
R2-G_T_O_7.   

Out of these the positively contributing 
descriptors are the geometrical topological 
indices such as R2-G_2_T_5, R2-G_T_T_6 
and R2-G_T_O_7. All the remaining 
descriptors are inversely proportional to 
inhibitory activity. The most influencial 
geometrical topological descriptor is R2-
G_T_T_6 with 13.90% contribution 
followed by R2-G_2_T_5 with 10.13% as 
indicated in the Partial Least Square 
Analysis model. The most negatively 
contributing descriptor is R2-HosoyaIndex 
with 17.57% contribution followed by -
15.48% contribution by R2-G_C_C_7.      
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Figure 8 - Summary of specific descriptors for different fragments  

Figure.9-12 show the observed versus predicted biological activity plot of training and test set 
molecules by all GQSAR models. The plot of observed vs. predicted activity provides an idea 
about how well the model was trained and how well it predicts the activity of the external test 
set. From the plot it can be seen that model is able to predict the activity of training set quite well 
(all points are close to regression line) as well as external test set up to ~60% (only 1 point is 
relatively apart from the regression line) in the PCA model providing confidence in predictive 
ability of the model.  

 

Figure.9 Plot of observed versus predicted pIC50 values obtained from MRA GQSAR model  
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Figure.10 Plot of observed versus predicted pIC50 values obtained from PLS GQSAR model  

 

Figure.11 Plot of observed versus predicted pIC50 values obtained from PCA GQSAR model  
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Figure.12 Plot of observed versus predicted pIC50 values obtained from k-NN GQSAR model   

Table 8 shows that the best 2D, 3D 
combined GQSAR model was derived from 
both the multiple regression analysis and 
partial least square analysis and it was found 
to have improved statistical parameters as 
compared to GQSAR PCR model. Hence, 
we have also developed GQSAR k-NN 
model by subjecting all the calculated 
fragment descriptors to the step wise 
forward backward selection coupled with k-
NN method, to capture nonlinearity in terms 

of individual fragment descriptors. This 
study has resulted in a k-NN GQSAR model 
which was found to be comparable to above 
reported GQSAR MRA and PLS model but 
has lower statistical significance (with 
respect to pred_r2) as compared to GQSAR 
models. The descriptors that were found to 
be important in the k-NN GQSAR model 
are: R6-MomInertiaY, R2-Quadrupole2, and 
R1-HydrogensCount.  

Descriptor Range 

R6-MomInertiaY 942.0660    944.8230 

R2-Quadrupole2 -9.7037    -4.4215 

R1-HydrogensCount 2.0000    2.0000 

Table.11 k-NN model descritptors with their minimum and maximum ranges  

An advantage of the k-NN method is that it 
can provide ranges (minimum and 
maximum, derived from the k nearest 
neighbours of the most active molecule) for 
each fragment descriptor as reported in 

Table 11. These ranges can be used as a 
reference when searching for similar 
fragments in a fragment database during the 
design of new molecules. Thus, unlike 
traditional QSAR models, the developed 
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combined 2D and 3D GQSAR models 
provide information about the important 
substitution site(s) along with their chemical 
nature and their interactions which could 
prove useful for designing of new 
molecules. Figure 13 helps us to identify the 

important features required at various 
positions so as to obtain a better lead 
molecule showing anti topoisomerase 1 
activity. These features can be incorporated 
so as to design potential lead molecules.  

 

Figure.13 Schematic representation of different features at various position favouring anti 
topoisomerase activity  

Conclusion  

The present study unveils key structural 
requirements for Topoisomerase I inhibition 
utilizing various GQSAR methods. A wide 
variety of structurally diverse 
Topoisomerase I inhibitors (naphthoquinone 
derivatives) collected from various literature 
reports were used in this study. The GQSAR 
analyses revealed the major importance of 
Baumann s alignment independent 
topological descriptors and geometrical 
topological indices along with other 
descriptors such as number of hydrogen 
bond donors, number of hydrogens, moment 
of inertia, Hosoyaindex in determining 
Topoisomerase I inhibition activity. The 

study reveals that any substitution on 
fragment A and fragment B will enhance the 
activity of the Naphthoquinone derivative 
against Topo I. Thus a combined 
Naphthoquinone derivative having both 
these fragments can be of importance for the 
inhibitory activity on Topo I.  

Acknowledgements  

We express our gratitude to European Union 
Erasmus Mundus Mobility for Life for 
granting us Fellowship under Host 
University, University of Rome Tor 
Vergata , Italy. We express special Thanks 
to Prof. Alessandro Desideri and his team 
for providing us infrastructure and guidance. 



 

307  

References  

1. Babula, P; Adam, V; Havel, L; Kizek, R 
(2007), Ceska a Slovenska farmacie: 
casopis Ceske farmaceuticke spolecnosti 
a Slovenske farmaceuticke 
spolecnosti 56 (3): 114 20. 

2. Ting, C.-Y.; Hsu, C.-T.; Hsu, H.-T.; Su, 
J.-S.; Chen,T.-Y.; Tarn, W.-Y.; Kuo, Y.-
H.; Whang-Peng, J.; Liu, L. F.; Hwang 
(2003), J. Biochem. Pharmacol., 66, 
1981. 

3. Song, G. Y.; Kim, Y.; You, Y.-J.; Cho, 
H.; Kim, S.-H.; Sok, D.-E.; Ahn, B.-Z. 
(2000) Arch. Pharm. Pharm. Med. Chem., 
333, 87. 

4. Chae, G.-H.; Song, G.-Y.; Kim, Y.; Cho, 
H.; Sok, D.-E.; Ahn, B.-Z.(1999) Arch. 
Pharm. Res., 22, 507. 

5. Song, G.-Y.; Kim, Y.; Zheng, X.-G.; 
You, Y.-J.; Cho, H.; Chung, J.-H.; Sok, 
D.-E.; Ahn, B.-Z (2000). Eur. J. Med. 
Chem., 35, 291. 

6. Song, G.-Y.; Zheng, X.-G.; Kim, Y.; 
You, Y.-J.; Sok, D.-E.; Ahn, B.-Z (1999). 
Bioorg. Med. Chem. Lett., 9, 2407. 

7. Kim, Y.; You, Y.-J.; Ahn, B.-Z. (2001) 
Arch. Pharm. Pharm. Med. Chem., 334, 
318. 

8. Fesen, M. R.; Kohn, K. W.; Leteurtre, F.; 
Pommier, Y. (1993) Proc. Natl. Acad. 
Sci. USA, 90, 2399. 

9. S. Ajmani, K. Jadhav, S.A. Kulkarni, 
(2009) QSAR Comb. Sci. 28 36 41. 

10. Ahn, B.-Z.; Sok, D.-E.(1996) 
Curr.Pharm.Des., 2, 247. 

11. Ahn, B.-Z.; Baik, K.-U.; Kweon, G.-R.; 
Lim, K.; Hwang, B.-D (1995). 
J.Med.Chem., 38, 1044. 

12. VLifeMDS, Version 3.5, VLife Sciences 
Technologies Pvt. Ltd., Pune, India, 
(2008). 

13. K. Baumann, (2002)  J. Chem. Inf. 
Comput. Sci. 42 26 35. 

14. S. Wold, QSAR-Chemometric Methods 
in Molecular Design, vol. 2, Wiley VCH, 
Weinheim, Germany, 1995, pp. 195 218. 

15. S. Wold, A. Ruhe, H. Wold, W.J. Dunn, 
(1984)  , SIAM J. Sci. Stat. Comp. 5 735
743. 

16. S. Ajmani, K. Jadhav, S.A. Kulkarni, 
(2009) , QSAR Comb. Sci. 28  36 41. 

17. M.A. Sharaf, D.L. Illman, B.R. Kowalski, 
(1986) Wiley, New York,. 

18. M. H. Kutner, C. J. Nachtsheim, and J. 
Neter (2004), "Applied Linear Regression 
Models", 4th ed., McGraw-Hill/Irwin, 
Boston. 

19. N. Ravishankar and D. K. Dey (2002), 
Chapman and Hall/CRC, Boca Raton. 

20. Foster, Dean P. and Edward I. George 
(1994), Annals of Statistics Volume 22, 
Number 4 1947-
1975. doi:10.1214/aos/1176325766. 

21. Wilkinson, L. and Dallal, G.E. 
(1981), Technometrics. 23. 377-380 

22. Pearson, K. (1901).  Philosophical 
Magazine 2(6): 559 572. 

23. Shaw PJA (2003) Multivariate statistics 
for the Environmental Sciences, Hodder-
Arnold. ISBN 0-3408-0763-6 

24. A. A. Miranda, Y. A. Le Borgne, and G. 
Bontempi.(2008) New Routes from 
Minimal Approximation Error to 
Principal Components, Volume 27, 
Number 3 / June, , Neural Processing 
Letters, Springer 

25. Fukunaga, Keinosuke 
(1990). Introduction to Statistical Pattern 
Recognition. Elsevier.  
ISBN 0122698517.  


